RP2040 A microcontroller by Raspberry Pi

Pico Python SDK
A MicroPython environment
for RP2040 microcontrollers

__|
Raspberry Pi Trading Ltd

Pico Python SDK

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-01-21
build-version: fcd04ef-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD ("RPTL) "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL's Standard Terms. RPTL's provision of the RESOURCES does not
expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties expressed
in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Pico Python SDK

Table of Contents

Colophon. .
Legal Disclaimer Notice
1. The MicroPython Environment.
1.1. Getting MicroPython for RP2040
1.2. Installing MicroPython on Raspberry Pi Pico
1.3. Building MicroPython From Source
2. Connecting to the MicroPython REPL
2.1. Connecting from a Raspberry PioverUSB
2.2. Connecting from a Raspberry Piusing GPIO
2.3. Connecting fromaMacusingUSB
2.4.Say "HelloWorld"
2.5 BlinkanLEDo
2.6.Whatnext? ...
3. The RP2040 Port
3.1. Blinking an LED Forever (Timer)
32.UART
3.3.ADC
34 Interrupts. .
3.5, Multicore Support
36.12C

3.9.PIOSupport ...
3.9.1.1IRQ
3.9.2.WS2812 LED (NeoPixel)
393 UART TX .
3.9.4. SPI
395 PWM. .
3.9.6.Using pioasm

4. Using an Integrated Development Environment (IDE)

471 .Using Thonny ...
4.1.1. Connecting to the Raspberry Pi Pico from Thonny
4.1.2. Blinking the LED from Thonny

4.2 Using rshell o -

Appendix A App Notes. ...

Using a SSD1306-based OLED graphics display.
Wiring information
Listof Files. ...
Billof Materials

Using a SH1106-based OLED graphics display
Wiring information ...
Listof Files.
Billof Materials

Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)

Wiring information
Listof Files.
Bill of Materials

Table of Contents

Pico Python SDK

Chapter 1. The MicroPython
Environment

Python is the fastest way to get started with embedded software on Raspberry Pi Pico. This book is about the official
MicroPython port for RP2040-based microcontroller boards.

MicroPython is a Python 3 implementation for microcontrollers and small embedded systems. Because MicroPython is
highly efficient, and RP2040 is designed with a disproportionate amount of system memory and processing power for its
price, MicroPython is a serious tool for embedded systems development, which does not compromise on approachability.

For exceptionally demanding pieces of software, you can fall back on the Pico SDK (covered in Getting started with
Raspberry Pi Pico and Pico C/C++ SDK), or an external C module added to your MicroPython firmware, to wring out the
very last drop of performance. For every other project, MicroPython handles a lot of heavy lifting for you, and lets you
focus on writing the code that adds value to your project. The accelerated floating point libraries in RP2040’s on-board
ROM storage are used automatically by your Python code, so you should find arithmetic performance quite snappy.

Most on-chip hardware is exposed through the standard machine module, so existing MicroPython projects can be ported
without too much trouble. The second processor core is exposed through the _thread module.

RP2040 has some unique hardware you won't find on other microcontrollers, with the programmable /0 system (PIO)
being the prime example of this: a versatile hardware subsystem that lets you create new 1/0 interfaces and run them at
high speed. In the rp2 module you will find a comprehensive PIO library which lets you write new PIO programs at the
MicroPython prompt, and interact with them in real time, to develop interfaces for new or unusual pieces of hardware (or
indeed if you just find yourself wanting an extra few serial ports).

MicroPython implements the entire Python 3.4 syntax (including exceptions, with, yield from, etc., and additionally async
/await keywords from Python 3.5). The following core datatypes are provided: str (including basic Unicode support), bytes,
bytearray, tuple, list, dict, set, frozenset, array.array, collections.namedtuple, classes and instances. Builtin modules
include sys, time, and struct, etc. Note that only a subset of Python 3 functionality is implemented for the data types and
modules.

MicroPython can execute scripts in textual source form (.py files) or from precompiled bytecode, in both cases either
from an on-device filesystem or "frozen" into the MicroPython executable.

1.1. Getting MicroPython for RP2040

Pre-built Binary

A pre-built binary of the latest MicroPython firmware is available from the Pico Getting Started pages.

The fastest way to get MicroPython is to download the pre-built release binary from the Pico Getting Started pages. If you
can't or don't want to use the pre-built release — for example, if you want to develop a C module for MicroPython — you
can follow the instructions in Section 1.3 to get the source code for MicroPython, which you can use to build your own
MicroPython firmware binary.

1.2. Installing MicroPython on Raspberry Pi Pico

Raspberry Pi Pico has a BOOTSEL mode for programming firmware over the USB port. Holding the BOOTSEL button when
powering up your board will put it into a special mode where it appears as a USB Mass Storage Device. First make sure
your Raspberry Pi Pico is not plugged into any source of power: disconnect the micro USB cable if plugged in, and
disconnect any other wires that might be providing power to the board, e.g. through the VSYS or VBUS pin. Now hold

1.1. Getting MicroPython for RP2040 3

https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://raspberrypi.org/documentation/pico/getting-started/
https://raspberrypi.org/documentation/pico/getting-started/

Pico Python SDK

down the BOOTSEL button, and plug in the micro USB cable (which hopefully has the other end plugged into your
computer).

A drive called RPI-RP2 should pop up. Go ahead and drag the MicroPython firmware.uf2 file onto this drive. This programs
the MicroPython firmware onto the flash memory on your Raspberry Pi Pico.

It should take a few seconds to program the UF2 file into the flash. The board will automatically reboot when finished,
causing the RPI-RP2 drive to disappear, and boot into MicroPython.

By default, MicroPython doesn't do anything when it first boots. It sits and waits for you to type in further instructions.
Chapter 2 shows how you can connect with the MicroPython firmware now running on your board. You can read on to see
how a custom MicroPython firmware file can be built from the source code.

The Getting started with Raspberry Pi Pico book has detailed instructions on getting your Raspberry Pi Pico into
BOOTSEL mode and loading UF?2 files, in case you are having trouble. There is also a section going over loading ELF files
with the debugger, in case your board doesn’t have an easy way of entering BOOTSEL, or you would like to debug a
MicroPython C module you are developing.

O NoTE

If you are not following these instructions on a Raspberry Pi Pico, you may not have a BOOTSEL button. If this is the
case, you should check if there is some other way of grounding the flash CS pin, such as a jumper, to tell RP2040 to
enter the BOOTSEL mode on boot. If there is no such method, you can load code using the Serial Wire Debug interface.

1.3. Building MicroPython From Source

The prebuilt binaries on the Pico Getting Started pages should serve most use cases, but you can build your own
MicroPython firmware from source if you'd like to customise its low-level aspects.

@ TP

If you have already downloaded and installed a prebuilt MicroPython UF2 file, you can skip ahead to Chapter 2 to start
using your board.

O IMPORTANT

These instructions for getting and building MicroPython assume you are using Raspberry Pi OS running on a
Raspberry Pi 4, or an equivalent Debian-based Linux distribution running on another platform.

It's a good idea to create a pico directory to keep all pico-related checkouts in. These instructions create a pico directory
at /home/pi/pico

S cd ~/
S mkdir pico
$ cd pico

Then clone the micropython git repository. These instructions will fetch the latest version of the source code.

$ git clone -b pico https://github.com/raspberrypi/micropython.git

Once the download has finished, the source code for MicroPython should be in a new directory called micropython. The
MicroPython repository also contains pointers (submodules) to specific versions of libraries it needs to run on a particular
board, like the Pico SDK in the case of RP2040. We need to explicitly fetch these too:

1.3. Building MicroPython From Source 4

https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://raspberrypi.org/documentation/pico/getting-started/

Pico Python SDK

$ cd micropython

S git submodule update --init -- lib/pico-sdk
$ cd lib/pico-sdk

$ git submodule update --init

O NoTE

The following instructions assume that you are using a Raspberry Pi Pico. Some details may differ if you are building
firmware for a different RP2040-based board. The board vendor should detail any extra steps needed to build firmware
for that particular board. The version we're building here is fairly generic, but there might be some differences like
putting the default serial port on different pins, or including extra modules to drive that board’s hardware.

To build the RP2040 MicroPython port, you'll need to install some extra tools. To build projects you'll need CMake, a cross-
platform tool used to build the software, and the GNU Embedded Toolchain for Arm, which turns MicroPython’s C source
code into a binary program RP2040’s processors can understand. build-essential is a bundle of tools you need to build
code native to your own machine — this is needed for some internal tools in MicroPython and the Pico SDK. You can
install all of these via apt from the command line. Anything you already have installed will be ignored by apt.

S sudo apt update
S sudo apt install cmake gcc-arm-none-eabi build-essential

To build the port, you first need to change directory into the micropython repository containing the source. If you've been
following along with the instructions, you'll need to go up two directories.

Secd ../..

First we need to bootstrap a special tool for MicroPython builds, that ships with the source code:

S make -C mpy-cross

We can now build the port we need for RP2040, that is, the version of MicroPython that has specific support for our chip.

$ cd ports/rp2
S make

If everything went well, there will be a new directory called build (ports/rp2/build relative to the micropython directory),
which contains the new firmware binaries. The most important ones are:

firmware.uf2 A UF2 binary file which can dragged onto the RPI-RP2 drive that pops up once your Raspberry Pi
Pico is in BOOTSEL mode. The firmware binaries you will find on Pico Getting Started pages are
UF?2 files, because they're the easiest to install.

firmware.elf A different type of binary file, which can be loaded by a debugger (such as gdb with openocd) over
RP2040's SWD debug port. This is useful for debugging either a native C module you've added to
MicroPython, or the MicroPython core interpreter itself. The actual binary contents is the same as

firmware.uf2.

You can take a look inside your new firmware.uf2 using picotool, see the Appendix B in the *Getting started with

1.3. Building MicroPython From Source 5

https://cmake.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://raspberrypi.org/documentation/pico/getting-started/
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf

Pico Python SDK

Raspberry Pi Pico book for details, e.g.

$ picotool info -a build/firmware.uf2
File /home/pico/micropython/ports/rp2/build/firmware.uf2:

Program Information

name :
version:
features:

frozen modules:
binary start:

binary end:
embedded drive:

MicroPython

v1.13-288-g3ce8f14e0

USB REPL

thread support

_boot, rp2, ds18x2@, onewire, uasyncio, uasyncio/core,
uasyncio/event, uasyncio/funcs, uasyncio/lock, uasyncio/stream
0x10000000

0x10038bes

0x100a0000-0x10200000 (1408K): MicroPython

Fixed Pin Information

none

Build Information
sdk version:
pico_board:
build date:

build attributes:

$

1.0.0
pico
Jan 21 2021
MinSizeRel

1.3. Building MicroPython From Source 6

https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf

Pico Python SDK

Chapter 2. Connecting to the
MicroPython REPL

When MicroPython boots for the first time, it will sit and wait for you to connect and tell it what to do. You can load a .py
file from your computer onto the board, but a more immediate way to interact with it is through what is called the read-
evaluate-print loop, or REPL (often pronounced similarly to "ripple").

Read MicroPython waits for you to type in some text, followed by the enter key.
Evaluate Whatever you typed is interpreted as Python code, and runs immediately.
Print Any results of the last line you typed are printed out for you to read.

Loop Go back to the start — prompt you for another line of code.

There are two ways to connect to this REPL, so you can communicate with the MicroPython firmware on your board: over
USB, and over the UART serial port on Raspberry Pi Pico GPIOs.

2.1. Connecting from a Raspberry Pi over USB

The MicroPython firmware is equipped with a virtual USB serial port which is accessed through the micro USB connector
on Raspberry Pi Pico. Your computer should notice this serial port and list it as a character device, most likely
/dev/ttyACMO.

@ TP

You can run 1s /dev/tty* to list your serial ports. There may be quite a few, but MicroPython's USB serial will start with
/dev/ttyAcM. If in doubt, unplug the micro USB connector and see which one disappears. If you don't see anything, you
can try rebooting your Raspberry Pi.

You can install minicom to access the serial port:

$ sudo apt install minicom

and then open it as such:

$ minicom -o -D /dev/ttyACM@

Where the -D /dev/ttyACMo is pointing minicom at MicroPython’s USB serial port, and the -o flag essentially means "just do
it". There's no need to worry about baud rate, since this is a virtual serial port.

Press the enter key a few times in the terminal where you opened minicom. You should see this:

>>>

This is a prompt. MicroPython wants you to type something in, and tell it what to do.

If you press CTRL-D on your keyboard whilst the minicom terminal is focused, you should see a message similar to this:

2.1. Connecting from a Raspberry Pi over USB 7

Pico Python SDK

MPY: soft reboot
MicroPython v1.13-422-9904433073 on 2021-01-19; Raspberry Pi Pico with RP20406
Type "help()" for more information.

>>>

This key combination tells MicroPython to reboot. You can do this at any time. When it reboots, MicroPython will print out
a message saying exactly what firmware version it is running, and when it was built. Your version number will be different
from the one shown here.

2.2. Connecting from a Raspberry Pi using GPIO

The MicroPython port for RP2040 also allows the REPL to be accessed over a UART port, through two GPIOs. By default
on Raspberry Pi Pico this is on GPIOO0 (TX, MicroPython output) and GPIO1 (RX, MicroPython input), and the speed is
115200 baud. This alternative interface is handy if you have trouble with USB, if you don't have any free USB ports, or if
you are using some other RP2040-based board which doesn’t have an exposed USB connector.

O NoTE

This initially occupies the UART@ peripheral on RP2040. The UART1 peripheral is free for you to use in your Python code as
a second UART.

To connect, the first thing you'll need to do is to enable UART serial on the Raspberry Pi. To do so, run raspi-config,

$ sudo raspi-config

and go to Interfacing Options — Serial and select "No" when asked "Would you like a login shell to be accessible over
serial?" and "Yes" when asked "Would you like the serial port hardware to be enabled?" You should see something like

Figure 1.
Figure 1. Enabling a pi@raspberrypi: ~
serial UART using File Edit Tabs Help
raspi-configon

the Raspberry Pi.

The serial login shell is disabled
The serial interface is enabled

Leaving raspi-config you should choose "Yes" and reboot your Raspberry Pi to enable the serial port.

You should then wire the Raspberry Pi and the Raspberry Pi Pico together with the following mapping:

Raspberry Pi Raspberry Pi Pico

GND GND

2.2. Connecting from a Raspberry Pi using GPIO 8

Pico Python SDK

GPIO15 (UART_RXO) GPIOO (UARTO_TX)

GPI014 (UART_TXO) GPOIT (UARTO_RX)

© IMPORTANT

RX matches to TX, and TX matches to RX. You mustn't connect the two opposite TX pins together, or the two RX pins.
This is because MicroPython needs to listen on the channel that the Raspberry Pi transmits on, and vice versa.

See Figure 2.

Figure 2. A Raspberry
Pi 4 and the Raspberry
Pi Pico with UARTO
connected together.

]

VVIVV = "

then connect to the board using minicom connected to /dev/serial®,
$ minicom -b 115200 -o -D /dev/serial®
If you press the enter key, MicroPython should respond by prompting you for more input:

>>>

2.3. Connecting from a Mac using USB

So long as you're using a recent version of macOS like Catalina, drivers should already be loaded. Otherwise see the
manufacturers' website for FTDI Chip Drivers. Then you should use a Terminal program, e.g. Serial or similar to connect to
the serial port.

]
2.3. Connecting from a Mac using USB 9

https://www.ftdichip.com/FTDrivers.htm
https://apps.apple.com/us/app/serial/id877615577?mt=12

Pico Python SDK

O NoTE

Serial also includes driver support if needed.

The Serial-over-USB port will show up as /dev/tty.usbmodem0000000000001. If you're using Serial this will be shown as "Board
in FS mode — CDC" in the port selector window when you open the application. Connect to this port and hit Return and
you should see the REPL prompt.

2.4. Say "Hello World"

Once connected you can check that everything is working by typing a Python "Hello World" into the REPL,

>>> print("Hello, Pico!")
Hello, Pico!

>>>

2.5. Blink an LED

The on-board LED on Raspberry Pi Pico is connected to GPIO pin 25. You can blink this on and off from the REPL. When
you see the REPL prompt enter the following,

>>> from machine import Pin
>>> led = Pin(25, Pin.OUT)

The machine module is used to control on-chip hardware. This is standard on all MicroPython ports, and you can read more
about it in the MicroPython documentation. Here we are using it to take control of a GPIO, so we can drive it high and low.
If you type this in,

>>> led.value(1)
The LED should turn on. You can turn it off again with

>>> led.value(0)

2.6. What next?

At this point you should have MicroPython installed on your board, and have tested your setup by typing short programs
into the prompt to print some text back to you, and blink an LED.

You can read on to the next chapter, which goes into the specifics of MicroPython on RP2040, and where it differs from
other platforms. Chapter 3 also has some short examples of the different APIs offered to interact with the hardware.

You can learn how to set up an integrated development environment (IDE) in Chapter 4, so you don't have to type
programs in line by line.

You can dive straight into Appendix A if you are eager to start connecting wires to a breadboard.

]
2.4. Say "Hello World" 10

https://www.decisivetactics.com/support/view?article=compatible-devices
https://docs.micropython.org/en/latest/library/machine.html

Pico Python SDK

Chapter 3. The RP2040 Port

Currently supported features include:
® REPL over USB and UART (on GPO/GP1).
® 1600 kB filesystem using littlefs2 on the on-board flash. (Default size for Raspberry Pi Pico)
® ytime module with sleep and ticks functions.
® ubinascii modile.
® machine module with some basic functions.
o machine.Pin class.
o machine.Timer class.
o machine.ADC class.
o machine.I2C and machine.SoftI2C classes.
o machine.SPI and machine.SoftSPI classes.
o machine.WDT class.
o machine.PWM class.
o machine.UART class.
® rp2 platform-specific module.
o PIO hardware access library
o PIO program assembler
o Raw flash read/write access
® Multicore support exposed via the standard _thread module
e Accelerated floating point arithmetic using the RP2040 ROM library and hardware divider (used automatically)

Documentation around MicroPython is available from https://docs.micropython.org. For example the machine module,
which can be used to access a lot of RP2040’s on-chip hardware, is standard, and you will find a lot of the information you
need in the online documentation for that module.

This chapter will give a very brief tour of some of the hardware APIs, with code examples you can either type into the
REPL (Chapter 2) or load onto the board using a development environment installed on your computer (Chapter 4).

3.1. Blinking an LED Forever (Timer)

In Chapter 2 we saw how the machine.Pin class could be used to turn an LED on and off, by driving a GPIO high and low.

>>> from machine import Pin
>>> led = Pin(25, Pin.OUT)
>>> led.value(1)
>>> led.value(0)

This is, to put it mildy, quite a convoluted way of turning a light on and off. A light switch would work better. The
machine.Timer class, which uses RP2040’s hardware timer to trigger callbacks at regular intervals, saves a lot of typing if
we want the light to turn itself on and off repeatedly, thus bringing our level of automation from "mechanical switch" to
"555 timer".

]
3.1. Blinking an LED Forever (Timer) 1

https://github.com/ARMmbed/littlefs
https://docs.micropython.org
https://docs.micropython.org/en/latest/library/machine.html

Pico Python SDK
]

Table 1. Default UART

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py Lines 1- 9

1 from machine import Pin, Timer
2

3 led = Pin(25, Pin.0UT)

4 tim = Timer()

5 def tick(timer):

global led

led.toggle()

O 0 N o

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)
Typing this program into the REPL will cause the LED to start blinking, but the prompt will appear again:
>>>

The Timer we created will run in the background, at the interval we specified, blinking the LED. The MicroPython prompt is
still running in the foreground, and we can enter more code, or start more timers.

3.2. UART

USB serial is available from MicroPython, but the REPL is also available over UARTO by default. The default settings for
UARTSs are taken from the C SDK.

Function Default
UART_BAUDRATE 115,200
UART_BITS 8
UART_STOP 1
UARTO_TX Pin0
UARTO_RX Pin 1
UART1_TX Pin 4
UART1_RX Pin 5

3.3. ADC

An analogue-to-digital converter (ADC) measures some analogue signal and encodes it as a digital number. The ADC on
RP2040 measures voltages.

An ADC has two key features: its resolution, measured in digital bits, and its channels, or how many analogue signals it
can accept and convert at once. The ADC on RP2040 has a resolution of 12-bits, meaning that it can transform an
analogue signal into a digital signal as a number ranging from 0 to 4095 - though this is handled in MicroPython
transformed to a 16-bit number ranging from 0 to 65,535, so that it behaves the same as the ADC on other MicroPython
microcontrollers.

RP2040 has five ADC channels total, four of which are brought out to chip GPIOs: GP26, GP27, GP28 and GP29. On
Raspberry Pi Pico, the first three of these are brought out to GPIO pins, and the fourth can be used to measure the VSYS
voltage on the board.

The ADC's fifth input channel is connected to a temperature sensor built into RP2040.

3.2. UART

12

https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py#L1-L9

Pico Python SDK

You can specify which ADC channel you're using by pin number, e.g.

adc = machine.ADC(26) # Connect to GP26, which is channel @

or by channel,

adc =
adc =

machine.ADC(4) # Connect to the internal temperature sensor
machine.ADC(@) # Connect to channel 6 (GP26)

An example reading the fourth analogue-to-digital (ADC) converter channel, connected to the internal temperature sensor:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/adc/temperature.py Lines 1- 12

import machine
import utime

machine.ADC(4)
3.3 / (65535)

sensor_temp =
conversion_factor =

while True:
reading = sensor_temp.read_u16() * conversion_factor

o N o o wWwN =

10 temperature = 27 - (reading - 0.706)/0.001721
11 print(temperature)
12 utime.sleep(2)

3.4. Interrupts

You can set an IRQ like this:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/irq/irq.py Lines 1-5

1 from machine import Pin

2

3 p2 = Pin(2, Pin.IN, Pin.PULL_UP)

4 p2.irq(lambda pin: print("IRQ with flags:", pin.irq().flags()),
5 Pin.IRQ_FALLING)

It should print out something when GP2 has a falling edge.

3.5. Multicore Support

Example usage:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/multicore/multicore.py Lines 1- 12

1 import time, _thread, machine

2

3 def task(n, delay):

4 led = machine.Pin(25, machine.Pin.OUT)

3.4. Interrupts

13

https://github.com/raspberrypi/pico-micropython-examples/tree/master/adc/temperature.py#L1-L12
https://github.com/raspberrypi/pico-micropython-examples/tree/master/irq/irq.py#L1-L5
https://github.com/raspberrypi/pico-micropython-examples/tree/master/multicore/multicore.py#L1-L12

Pico Python SDK

5 for i in range(n):

6 led.high()

7 time.sleep(delay)
8 led.low()

9 time.sleep(delay)
10 print('done')

11

12 _thread.start_new_thread(task, (10, ©8.5))

Only one thread can be started/running at any one time, because there is no RT0S just a second core. The GIL is not
enabled so both cored and core1 can run Python code concurrently, with care to use locks for shared data.

3.6.12C

Example usage:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c.py Lines 1- 11

1 from machine import Pin, I2C

2

3 i2c = I2C(@, scl=Pin(9), sda=Pin(8), freq=100000)
4 i2c.scan()

5 i2c.writeto(76, b'123")

6 i2c.readfrom(76, 4)

7

8 i2c¢ = I2C(1, scl=Pin(7), sda=Pin(6), freq=100000)
9 i2c.scan()

10 i2c.writeto_mem(76, 6, b'456")

11 i2c.readfrom_mem(76, 6, 4)

12C can be constructed without specifying the frequency, if you just want all the defaults.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c_without_freq.py Lines 1- 3

1 from machine import I2C
2
3 i2c = I2C(@) # defaults to SCL=Pin(9), SDA=Pin(8), freq=400000

@ WARNING
There may be some bugs reading/writing to device addresses that do not respond, the hardware seems to lock up in
some cases.
T.able 2 Default 26 Function Default
pins
12C Frequency 400,000
12C0 SCL Pin9
12C0 SDA Pin 8
[2C1 SCL Pin7
12C1 SDA Pin 6

3.6.12C 14

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c.py#L1-L11
https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c_without_freq.py#L1-L3

Pico Python SDK

3.7. SPI

Example usage:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/sqi/sqi.py Lines 1- 11

1 from machine import SPI

2

3 spi = SPI(0)

4 spi = SPI(©, 100_000)

5 spi = SPI(@, 100_600, polarity=1, phase=1)

6

7 spi.write('test')

8 spi.read(5)

9

10 buf = bytearray(3)

11 spi.write_readinto('out', buf)
O NoTE
The chip select must be managed separately using a machine.Pin.

T?ble . Default S Function Default
pins

SPI_BAUDRATE 1,000,000
SPI_POLARITY 0
SPI_PHASE 0
SPILBITS 8
SPI_FIRSTBIT MSB
SPI0_SCK Pin 6
SPI0_MOSI Pin7
SPIO_MISO Pin 4
SPIT1_SCK Pin 10
SPIT_MOSI Pin 11
SPIT_MISO Pin 8

3.8. PWM

Example of using PWM to fade an LED:
Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pwm/pwm_fade.py Lines 1- 25

Example using PWM to fade an LED.

import time
from machine import Pin, PWM

N oo b N =

Construct PWM object, with LED on Pin(25).

3.7. SPI

https://github.com/raspberrypi/pico-micropython-examples/tree/master/sqi/sqi.py#L1-L11
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pwm/pwm_fade.py#L1-L25

Pico Python SDK
]

8 pwm = PWM(Pin(25))

9

10 # Set the PWM frequency.
11 pwm.freq(1000)

12
13 # Fade the LED in and out a few times.
14 duty = @

15 direction = 1
16 for _ in range(8 * 256):

17 duty += direction

18 if duty > 255:

19 duty = 255

20 direction = -1

21 elif duty < @:

22 duty = @

23 direction = 1

24 pwm.duty_ul6(duty * duty)
25 time.sleep(0.001)

3.9. PIO Support

The current status of PIO support

The current development status of PIO support can be found in this Github issue. Support for PIO is
preliminary and may be unstable.

Current support allows you to define Programmable 10 (PI0) Assembler blocks and using them in the PIO peripheral, more
documentation around PIO can be found in Chapter 3 of the RP2040 Datasheet and Chapter 4 of the Pico C/C++ SDK
book.

The Raspberry Pi Pico MicroPython introduces a new @rp2.asm_pio decorator, along with a rp2.PI0 class. The definition of a
P10 program, and the configuration of the state machine, into 2 logical parts:

® The program definition, including how many pins are used and if they are in/out pins. This goes in the @rp2.asm_pio
definition. This is close to what the pioasm tool from the Pico SDK would generate from a .pio file (but here it's all
defined in Python).

® The program instantiation, which sets the frequency of the state machine and which pins to bind to. These get set
when setting a SM to run a particular program.

The aim was to allow a program to be defined once and then easily instantiated multiple times (if needed) with different
GPIO. Another aim was to make it easy to basic things without getting weighed down in too much PIO/SM configuration.

Example usage, to blink the on-board LED connected to GPIO 25,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_blink.py Lines 1 - 28

1 import time

2 from rp2 import PIO, asm_pio
3 from machine import Pin
4
5

Define the blink program. It has one GPIO to bind to on the set instruction, which is an
output pin.
6 # Use lots of delays to make the blinking visible by eye.
7 @asm_pio(set_init=rp2.PI0.0UT_LOW)
8 def blink():
9 wrap_target()
0 set(pins, 1) [31]

|
3.9. PIO Support 16

https://github.com/raspberrypi/micropython/issues/16#issuecomment-698996984
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf#section_pio
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf#section_pio
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_blink.py#L1-L28

Pico Python SDK
]

11
12
13
14
15
16
17
18
19
20
21

22 # Instantiate a state machine with the blink program, at 1000Hz, with set bound to Pin(25)

23
24
25
26
27
28

nop () [31]
nop () [31]
nop () [31]
nop () [31]
set(pins, 0) [31]
nop () [31]
nop() [31]
nop () [31]
nop () [31]
wrap()

(LED on the rp2 board)
sm = rp2.StateMachine(®, blink, freq=1000, set_base=Pin(25))

Run the state machine for 3 seconds. The LED should blink.
sm.active(1)
time.sleep(3)
sm.active(0)

or via explicit exec.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_exec.py Lines 1 - 27

0 N O g WN =

N NN NN NNNMNA A aaaaaaaaaa aaa
N o o WODN =2 ®©® O 00N WN =2 OV

Example using PIO to turn on an LED via an explicit exec.
#

Demonstrates:

- using set_init and set_base

- using StateMachine.exec

import time
from machine import Pin
import rp2

Define an empty program that uses a single set pin.
@rp2.asm_pio(set_init=rp2.PI0.0UT_LOW)
def prog():

pass

Construct the StateMachine, binding Pin(25) to the set pin.
sm = rp2.StateMachine(®, prog, set_base=Pin(25))

Turn on the set pin via an exec instruction.
sm.exec("set(pins, 1)")

Sleep for 500ms.
time.sleep(0.5)

Turn off the set pin via an exec instruction.
sm.exec("set(pins, 0)")

Some points to note,

® All program configuration (eg autopull) is done in the easm_pio decorator. Only the frequency and base pins are set in
the StateMachine constructor.

® [n]is used for delay, .set(n) used for sideset

® The assembler will automatically detect if sideset is used everywhere or only on a few instructions, and set the

SIDE_EN bit automatically

3.9. PIO Support

17

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_exec.py#L1-L27

Pico Python SDK
]

The idea is that for the 4 sets of pins (in, out, set, sideset, excluding jmp) that can be connected to a state machine, there's
the following that need configuring for each set:

1. base GPIO

2. number of consecutive GPIO

3. initial GPIO direction (in or out pin)
4. initial GPIO value (high or low)

In the design of the Python API for PIO these 4 items are split into "declaration” (items 2-4) and "instantiation" (item 1). In
other words, a program is written with items 2-4 fixed for that program (eg a WS2812 driver would have 1 output pin) and
item 1 is free to change without changing the program (eg which pin the WS2812 is connected to).

So in the easm_pio decorator you declare items 2-4, and in the StateMachine constructor you say which base pin to use (item
1). That makes it easy to define a single program and instantiate it multiple times on different pins (you can't really
change items 2-4 for a different instantiation of the same program, it doesn't really make sense to do that).

And the same keyword arg (in the case about it's sideset_pins) is used for both the declaration and instantiation, to show
that they are linked.

To declare multiple pins in the decorator (the count, ie item 2 above), you use a tuple/list of values. And each item in the
tuple/list specified items 3 and 4. For example:

1 @asm_pio(set_pins=(PIO.OUT_LOW, PIO.OUT_HIGH, PIO.IN_LOW), sideset_pins=PI0.OUT_LOW)
2 def foo():

3

4

5 sm = StateMachine(®, foo, freq=10000, set_pins=Pin(15), sideset_pins=Pin(22))

In this example:

e there are 3 set pins connected to the SM, and their initial state (set when the StateMachine is created) is: output low,
output high, input low (used for open-drain)

® there is 1 sideset pin, initial state is output low
® the 3 set pins start at Pin(15)
® the 1 sideset pin starts at Pin(22)

The reason to have the constants 0UT_LOW, OUT_HIGH, IN_LOW and IN_HIGH is so that the pin value and dir are automatically set
before the start of the PIO program (instead of wasting instruction words to do set(pindirs, 1) etc at the start).

3.9.1.IRQ

There is support for PIO IRQs, e.g.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_irq.py Lines 1 - 25

1 import time

2 import rp2

8

4 @rp2.asm_pio()
5 def irq_test():

6 wrap_target()

7 nop () [31]
8 nop () [31]
9 nop() [31]
10 nop() [31]
11 irq(@)

|
3.9. PIO Support 18

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_irq.py#L1-L25

Pico Python SDK
]

12 nop() [31]

13 nop() [31]

14 nop() [31]

15 nop () [31]

16 irq(1)

17 wrap()

18

19

20 rp2.PI0(0).irq(lambda pio: print(pio.irq().flags()))
21

22 sm = rp2.StateMachine(®, irq_test, freq=1000)
23 sm.active(1)

24 time.sleep(1)

25 sm.active(0)

An example program that blinks at THz and raises an IRQ at THz to print the current millisecond timestamp,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_1hz.py Lines 1 - 33

1 # Example using PIO to blink an LED and raise an IRQ at 7Hz.
2

3 import time

4 from machine import Pin

5 import rp2

6

7

8 @rp2.asm_pio(set_init=rp2.PI0.0UT_LOW)

9 def blink_1hz():

10 # Cycles: 1+ 1 +6 + 32 % (30 + 1) = 1000
11 irq(rel(0))

12 set(pins, 1)

13 set(x, 31) [5]

14 label("delay_high")

15 nop () [29]

16 jmp(x_dec, "delay_high")

17

18 # Cycles: 1 + 7 + 32 * (30 + 1) = 1000
19 set(pins, 0)

20 set(x, 31) [6]

21 label("delay_low")

22 nop() [29]

23 jmp(x_dec, "delay_low")

24

25

26 # Create the StateMachine with the blink_1hz program, outputting on Pin(25).
27 sm = rp2.StateMachine(@, blink_1hz, freq=2000, set_base=Pin(25))

28

29 # Set the IRQ handler to print the millisecond timestamp.

30 sm.irq(lambda p: print(time.ticks_ms()))

31

32 # Start the StateMachine.

33 sm.active(1)

or to wait for a pin change and raise an IRQ.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pinchange.py Lines 1 - 46

1 # Example using PIO to wait for a pin change and raise an IRQ.
2 #
3 # Demonstrates:

|
3.9. PIO Support 19

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_1hz.py#L1-L33
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pinchange.py#L1-L46

Pico Python SDK
]

4 # - PIO wrapping

5 # - PIO wait instruction, waiting on an input pin

6 # - PIO irq instruction, in blocking mode with relative IRQ number

7 # - setting the in_base pin for a StateMachine

8 # - setting an irq handler for a StateMachine

9 # - instantiating 2x StateMachine's with the same program and different pins
10

11 import time

12 from machine import Pin
13 import rp2

14

15

16 @rp2.asm_pio()

17 def wait_pin_low():

18 wrap_target()

19

20 wait(@, pin, @)

21 irq(block, rel(®@))

22 wait(1, pin,)

23

24 wrap()

25

26

27 def handler(sm):

28 # Print a (wrapping) timestamp, and the state machine object.
29 print(time.ticks_ms(), sm)
30

31

32 # Instantiate StateMachine(0) with wait_pin_low program on Pin(16).
33 pin16 = Pin(16, Pin.IN, Pin.PULL_UP)

34 sm@ = rp2.StateMachine(®, wait_pin_low, in_base=pin16)

35 sm@.irq(handler)

36

37 # Instantiate StateMachine(1) with wait_pin_low program on Pin(17).
38 pin17 = Pin(17, Pin.IN, Pin.PULL_UP)

39 sm1 = rp2.StateMachine(1, wait_pin_low, in_base=pin17)

40 sm1.irq(handler)

41

42 # Start the StateMachine's running.

43 sm@.active(1)

44 sm1.active(1)

45

46 # Now, when Pin(16) or Pin(17) is pulled low a message will be printed to the REPL.

3.9.2. WS2812 LED (NeoPixel)

While a WS2812 LED (NeoPixel) can be driven via the following program,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_ws2812.py Lines 1 - 52

1 # Example using PIO to drive a set of WS2812 LEDs.
2

3 import array, time

4 from machine import Pin

5 import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS = 8

® © o N o

=

|
3.9. PIO Support 20

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_ws2812.py#L1-L52

Pico Python SDK
]

11 @rp2.asm_pio(sideset_init=rp2.PI0.0UT_LOW, out_shiftdir=rp2.PI0.SHIFT_LEFT, autopull=True,
pull_thresh=24)
12 def ws2812():

13 T1 = 2

14 T2 = 5

15 T3 =3

16 wrap_target()

17 label("bitloop")

18 out(x, 1) .side(0) [T3 - 1]
19 jmp(not_x, "do_zero") .side(1) [T1 - 1]
20 jmp("bitloop") .side(1) [T2 - 1]
21 label("do_zero")

22 nop() .side(0) [T2 - 1]
23 wrap()

24

25

26 # Create the StateMachine with the ws2812 program, outputting on Pin(22).
27 sm = rp2.StateMachine (@, ws2812, freq=8_000_000, sideset_base=Pin(22))
28

29 # Start the StateMachine, it will wait for data on its FIFO.

30 sm.active(1)

31

32 # Display a pattern on the LEDs via an array of LED RGB values.

33 ar = array.array("I", [@ for _ in range(NUM_LEDS)])

34

35 # Cycle colours.

36 for i in range(4 * NUM_LEDS):

37 for j in range(NUM_LEDS) :

38 r=3j* 108 // (NUM_LEDS - 1)

39 b =100 - j * 180 // (NUM_LEDS - 1)
40 if j !'= 1 % NUM_LEDS:

41 r >>= 3

42 b >>= 3

43 ar[jl =r <<16 | b

44 sm.put(ar, 8)

45 time.sleep_ms(50)

46

47 # Fade out.
48 for i in range(24):

49 for j in range(NUM_LEDS):
50 ar[j] >>=1

51 sm.put(ar, 8)

52 time.sleep_ms(50)

3.9.3. UART TX
A UART TX example,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_uart_tx.py Lines 1 - 42

Example using PIO to create a UART TX interface

from machine import Pin
from rp2 import PIO, StateMachine, asm_pio

UART_BAUD = 115200
PIN_BASE = 10
NUM_UARTS = 8

® © 0 N o g b WN =

|
3.9. PIO Support 21

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_uart_tx.py#L1-L42

Pico Python SDK
]

11 @asm_pio(sideset_init=PI0.OUT_HIGH, out_init=PI0.OUT_HIGH, out_shiftdir=PIO.SHIFT_RIGHT)

12 def uart_tx():

13 # Block with TX deasserted until data available

14 pull()

15 # Initialise bit counter, assert start bit for 8 cycles
16 set(x, 7) .side(®@) [7]

17 # Shift out 8 data bits, 8 execution cycles per bit

18 label("bitloop")

19 out(pins, 1) [6]

20 jmp(x_dec, "bitloop")

21 # Assert stop bit for 8 cycles total (incl 1 for pull())
22 nop() .side(1) [6]

23

24

25 # Now we add 8 UART TXs, on pins 10 to 17. Use the same baud rate for all of them.
26 uarts = []
27 for i in range(NUM_UARTS):

28 sm = StateMachine(

29 i, uart_tx, freq=8 * UART_BAUD, sideset_base=Pin(PIN_BASE + i), out_base=Pin
(PIN_BASE + i)

30)

31 sm.active(1)

32 uarts.append(sm)

33

34 # We can print characters from each UART by pushing them to the TX FIFO
35 def pio_uart_print(sm, s):

36 for ¢ in s:

37 sm.put(ord(c))
38

39

40 # Print a different message from each UART
41 for i, u in enumerate(uarts):
42 pio_uart_print(u, "Hello from UART {}!\n".format(i))

O NoOTE

instantiation, even though in this program it is redundant because the mappings overlap.

You need to specify an initial OUT pin state in your program in order to be able to pass OUT mapping to your SM

3.9.4. SPI

An SPl example.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_spi.py Lines 1 - 48

1 from machine import Pin

3 @rp2.asm_pio(out_shiftdir=0, autopull=True, pull_thresh=8, autopush=True, push_thresh=8,

sideset_init=(rp2.PI0.0UT_LOW, rp2.PI0.OUT_HIGH), out_init=rp2.PIO.OUT_LOW)
4 def spi_cphad():

5 # Note X must be preinitialised by setup code before first byte, we reload after sending
each byte

6 # Would normally do this via exec() but in this case it's in the instruction memory and is
only run once

7 set(x, 6)

8 # Actual program body follows

9 wrap_target()

10 pull(ifempty) .side(Bx2) [1]

11 label("bitloop")

3.9. PIO Support

22

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_spi.py#L1-L48

Pico Python SDK

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29

out(pins, 1) .side(06x0) [1]
in_(pins, 1) .side(@x1)
jmp(x_dec, "bitloop") .side(@x1)
out(pins, 1) .side(0x0)
set(x, 6) .side(@x0) # Note this could be replaced with mov x, y for
programmable frame size
in_(pins, 1) .side(@x1)
jmp(not_osre, "bitloop") .side(0x1) # Fallthru if TXF empties
nop() .side(0x0) [1] # CSn back porch
wrap()
class PIOSPI:

def __init__(self, sm_id, pin_mosi, pin_miso, pin_sck, cpha=False, cpol=False, freq
=1000000) :
assert(not(cpol or cpha))
self._sm = rp2.StateMachine(sm_id, spi_cpha®, freq=4*freq, sideset_base=Pin(
pin_sck), out_base=Pin(pin_mosi), in_base=Pin(pin_sck))

30 self._sm.active(1)
31
32 # Note this code will die spectacularly cause we're not draining the RX FIFO
33 def write_blocking(wdata):
34 for b in wdata:
35 self._sm.put(b << 24)
36
37 def read_blocking(n):
38 data = []
39 for i in range(n):
40 data.append(self._sm.get() & Oxff)
41 return data
42
43 def write_read_blocking(wdata):
44 rdata = []
45 for b in wdata:
46 self._sm.put(b << 24)
47 rdata.append(self._sm.get() & @Oxff)
48 return rdata
© NoTE

This SPI program supports programmable frame sizes (by holding the reload value for X counter in the Y register) but
currently this cant be used, because the autopull threshold is associated with the program, instead of the SM
instantiation.

3.9.5. PWM

A PWM example,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pwm.py Lines 1 - 43

1
2
3
4
5
6

Example of using PIO for PWM, and fading the brightness of an LED

from machine import Pin
from rp2 import PIO, StateMachine, asm_pio
from time import sleep

3.9. PIO Support

23

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pwm.py#L1-L43

Pico Python SDK

7

8 @asm_pio(sideset_init=PI0.OUT_LOW)

9 def pwm_prog():

pull(noblock) .side(®)

mov(x, osr) # Keep most recent pull data stashed in X, for recycling by noblock
mov(y, isr) # ISR must be preloaded with PWM count max

label("pwmloop")

jmp(x_not_y, "skip")

nop() .side(1)

label("skip")

jmp(y_dec, "pwmloop")

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class PIOPWM:

def

def

__init__(self, sm_id, pin, max_count, count_freq):

self._sm = StateMachine(sm_id, pwm_prog, freq=2 * count_freq, sideset_base=Pin(pin))
Use exec() to load max count into ISR

self._sm.put(max_count)

self._sm.exec("pull()")

self._sm.exec("mov(isr, osr)")

self._sm.active(1)

self._max_count = max_count

set(self, value):

Minimum value is -1 (completely turn off), @ actually still produces narrow pulse
value = max(value, -1)

value = min(value, self._max_count)

self._sm.put(value)

Pin 25 is LED on Pico boards
pwm = PIOPWM(®, 25, max_count=(1 << 16) - 1, count_freq=10_000_000)

while True:

for

i in range(256):
pwm.set(i ** 2)
sleep(0.01)

3.9.6. USing pioasm

As well as writing PIO code inline in your MicroPython script you can use the pioasm tool from the C/C++ SDK to generate a
Python file.

$ pioasm -o python input (output)

For more information on pioasm see the Pico C/C++ SDK book which talks about the C/C++ SDK.

3.9. PIO Support

24

https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf

Pico Python SDK

Figure 3. Installing the
Raspberry Pi Pico
Wheel file.

Chapter 4. Using an Integrated
Development Environment (IDE)

The MicroPython port to Raspberry Pi Pico and other RP2040-based boards works with commonly used development
environments.

4.1. Using Thonny

Thonny packages are available for Linux, MS Windows, and macOS. After installation, using the Thonny development
environment is the same across all three platforms. The latest release of Thonny can be downloaded from thonny.org

Alternatively if you are working on a Raspberry Pi you should install Thonny using apt from the command line,

$ sudo apt install thonny

this will add a Thonny icon to the Raspberry Pi desktop menu. Go ahead and select Raspberry Pi — Programming —
Thonny Python IDE to open the development environment.

O NoOTE

When opening Thonny for the first time select "Standard Mode." For some versions this choice will be made via a
popup when you first open Thonny. However for the Raspberry Pi release you should click on the text in the top right of
the window to switch to "Regular Mode."

Download the Pico backend wheel from Github, https://github.com/raspberrypi/thonny-pico/releases/latest. This wheel
file can be installed into Thonny version 3.3.0b6 or later.

Start Thonny and navigate to "Tools — Manage plug-ins" and click on the link to "Install from local file" in the right hand

panel, and select the Pico backend wheel (see Figure 3). Hit the "Close" button to finish. Afterwards you should quit and
restart Thonny.

QZd O @

e

00 Thonny plug-ins

This dialog is for managing Thonny plug-ins and their dependencies.
If you want to install packages for your own programs then choose 'Tools - Manage packages..."
(In this case Thonny's back-end uses same interpreter, so both dialogs manage same packages.)

NB! You need to restart Thonny after installing / upgrading / uninstalling a plug-in.

‘ ‘ Search on PyPI

<INSTALL>

keras-applications
keras-preprocessing
lazy-object-proxy
mccabe

mock

mypy
mypy-extensions
numpy

paramiko

[Install from PyPI

astroid If you don't know where to get the package from, then most likely you'll want to search the Python
asttokens Package Index. Start by entering the name of the package in the search box above and pressing ENTER.
berypt

bitstring Install from requirements file

certifi Click here to locate requirements.txt file and install the packages specified in it.

cffi

cryptography Install from local file

docutils Click heghto locate and install the package file (usually with .whl, .tar.gz or .zip extension).

ecdsa

esptool Upgrade or uninstall

isort Start by selecting the package from the left.

jedi

Target: user site packages
This dialog lists all available
[Users/aa/Li y/Py /3.7 lib, ew
directory. Other locations must be managed by alternative means.

but allows ing and ing only from
i will be also installed into this

‘ Close ‘

4.1. Using Thonny

25

http://thonny.org
https://github.com/raspberrypi/thonny-pico/releases/latest

Pico Python SDK

4.1.1. Connecting to the Raspberry Pi Pico from Thonny

Connect your computer and the Raspberry Pi Pico together, see Chapter 2. Then open up the Run menu and select Run —

Select Interpreter, picking "MicroPython (Raspberry Pi Pico)" from the drop down, see Figure 4.

Figure 4. Selecting the
correct MicroPython

interpreter inside the 15
Thonny environment. <untitled>
1

2 Thonny - <untitled> @ 1: 1
oO% ~ v o @

x

00 Thonny options

Shell = I

Python 3
>>>

‘m Interpreter

Which interpreter or device should Thonny use for running your code?

MicroPython (Raspberry Pi Pico) |v

The same interpreter which runs Thonny (default)
Alternative Python 3 interpreter or virtual environment
Remote Python 3 (SSH)

MicroPython (local)

MicroPython (SSH)

MicroPython (BBC micro:bit)

MicroPython (Raspberry Pi Pico)

MicroPython (ESP32)

MicroPython (ESP8266)

MicroPython (generic)

CircuitPython (generic)

A special virtual environment (deprecated)

Install or update firmware

OK | | Cancel

Hit "OK". If your Raspberry Pi Pico is plugged in and running MicroPython Thonny should automatically connect to the

REPL.

If this doesn’t happen go to Tools — Options menu item, and select your serial port in the drop down on the "Interpreter"
tab. On the Raspberry Pi the serial port will be "Board in FS Mode — Board CDC (/dev/ttyACMO0)" this should automatically
connect you to the REPL of your Raspberry Pi Pico. Afterwards go to the "View" menu and select the "Variables" option to

open the vari

© NoTE

ables panel.

In the rare case where you can't connect to Raspberry Pi Pico you may have to reboot your Raspberry Pi.

You can now access the REPL from the Shell panel,

>>> prin

t('Hello Pico!")

Hello Pico!

>>>

see Figure 5.

4.1. Using Thonny

26

Pico Python SDK

Figure 5. Saying "Hello
Pico!" from the
MicroPython REPL
inside the Thonny
environment.

ece = Thonny - <untitled> @ 1:1
DEd O+« w
<untitled> Variables
1 Name | value
machine <module 'umachine'>
pico <module 'pico’>
Shell
Python 3.7.9 (bundled)
>>>
MicroPython v1.13-111-g20c4b0d3d on 2020-10-22; Raspberry Pi PICO with cortex-mOplus
Type "help()" for more information.
>>> print('Hello Pico!')
Hello Pico!
5> |

MicroPython (Raspberry Pi Pico)

4.1.2. Blinking the LED from Thonny

You can use a timer to blink the on-board LED.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py Lines 1- 9

1
2
&
4
5
6

7
8
9

from machine import Pin, Timer

led = Pin(25, Pin.OUT)

tim = Timer()

def tick(timer):
global led
led.toggle()

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

Enter the code in the main panel, then click on the green run button. Thonny will present you with a popup, click on

"MicroPython device" and enter "test.py" to save the code to the Raspberry Pi Pico, see Figure 6.

4.1. Using Thonny

27

https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py#L1-L9

Pico Python SDK
]

Figure 6. Saving code
to the Raspberry Pi
Pico inside the Thonny
environment.

Figure 7. Blinking an
LED using a timer from
the Thonny
environment.

. Thonny - <untitled> @ 8 : 55
DEd O+ @

<untitled> *

Variables - |

from machine import Pin, Timer
led = Pin(25, Pin.OUT)
tim = Timer()
def tick(timer):
global led
led. toggle()

®NOUI A WN

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)|

o0 e Where to save to?

This computer

Shell MicroPython device

Python 3.7.9 (bundled)
>>>

Name | value
machine <module 'umachine’>
pico <module 'pico’>

icropy v1.13-11 on ; Raspberry Pi PICO with pl
Type "help()" for more information.

>>> print('Hello Pico!')
Hello Pico!

>>>

MicroPython (Raspberry Pi Pico) |

O NoTE

If you "save a file to the device" and give it the special name main.py, then MicroPython starts running that script as
soon as power is supplied to Raspberry Pi Pico in the future.

The program should uploaded to the Raspberry Pi Pico using the REPL, and automatically start running. You should see
the onboard LED start blinking, connected to GPIO pin 25, and the variables change in the Thonny variable window, see

Figure 7.
e e = Thonny - MicroPython device :: ftest.py @ 8 : 55
DzZE 0 w
[testpy] - Variables
1 from machine import Pin, Timer Name. | value
2 led = Pin(25, Pin.0UT) Pin <class Pin'>
3 tim = Timer() Timer
4 def tick(timer): et e T
5 global led e in(25, mode=0UT)
6 Ted. toggle() machine <module ‘umachine’>
7 2 <module 'rp2'>
4 tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)| tick: <function tick at 0x20003940>
tim Timer(mode=PERIODIC, period=400000, tick_hz=1000000)
shell -
MioroPython vi.13-140-g61074188d on 2020-11-14; Raspberry Pi Pico with R2040
Type “help()" for more information.
>>> %Run —c $EDITOR_CONTENT
5>

MicroPython (Raspberry Pi Pico)

4.2. Using rshell

The Remote Shell for MicroPython (rshell) is a simple shell which runs on the host and uses MicroPython’s REPL to send
python code to the Raspberry Pi Pico in order to get filesystem information, and to copy files to and from MicroPython’s

own filesystem.

You can install rshell using,

]
4.2. Using rshell

28

https://github.com/dhylands/rshell

Pico Python SDK

$ sudo apt install python3-pip
$ sudo pip3 install rshell

Assuming that the UART is connected to your Raspberry Pi, see Section 2.7, then you can connect to Raspberry Pi Pico
using,

S rshell --buffer-size=512 -p /dev/serial®@
Connecting to /dev/serial@ (buffer-size 512)...
Trying to connect to REPL connected

Testing if sys.stdin.buffer exists ... N
Retrieving root directories ...

Setting time ... Aug 21, 2020 15:35:18
Evaluating board_name ... pyboard

Retrieving time epoch ... Jan 01, 2000

Welcome to rshell. Use Control-D (or the exit command) to exit rshell.

/home/pi>

Full documentation of rshell can be found on the project’s Github repository.

4.2. Using rshell

29

https://github.com/dhylands/rshell/blob/master/README.rst

Pico Python SDK

Figure 8. Wiring the
OLED to Pico using
12c

Appendix A: App Notes

Using a SSD1306-based OLED graphics display

Display an image and text on 12C driven SSD1306-based OLED graphics display.

Wiring information

See Figure 8 for wiring instructions.

. L28x32 I2C OLED *.

128x32 OLED

. U

(I B
flefle o o o
olefle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olefle o o o

U I)

e e e

List of Files

A list of files with descriptions of their function;

i2c_13060led_using_defaults.py

The example code.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/13060led/i2c_13060led_using_defaults.py Lines 1 - 33

1 # Display Image & text on I2C driven ssd1306 OLED display

2 from machine import Pin, I2C

3 from ssd1306 import SSD1306_I2C

4 import framebuf

5

6 WIDTH = 128 # oled display width

7 HEIGHT = 32 # oled display height

8

9 i2c¢c = I2C(0) # Init I2C using I2C6 defaults,
SCL=Pin(GP9), SDA=Pin(GP8), freq=400000

10 print("I2C Address : "+hex(i2c.scan()[@]).upper()) # Display device address

11 print("I2C Configuration: "+str(i2c)) # Display I2C config

12

]
Using a SSD1306-based OLED graphics display

30

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306oled/i2c_1306oled_using_defaults.py#L1-L33

Pico Python SDK

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c) # Init oled display

Raspberry Pi logo as 32x32 bytearray

buffer = bytearray(b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xa0\x80\x00\x83\xc1\x00\x00C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x080\x9c\x11\x008\xB0\xbf\xfd\x80\x00\xe1\x87\x00\x01\xc1\x83\x80\x02A
\x82@\x02A\x82@\x02\xc1\xc2@\x02\xf6>\xcB\x01\xfc
=\x80\x081\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x00\x00\x0Bc \x00\x00\x083\xcB\x0B0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer(buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on it.
oled.fill(@)

Blit the image from the framebuffer to the oled display
oled.blit(fb, 96, 0)

Add some text
oled.text("Raspberry Pi",5,5)
oled.text("Pico",5,15)

Finally update the oled display so the image & text is displayed
oled.show()

i2c_13060led_with_freq.py

The example code, explicitly sets a frequency.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306o0led/i2c_13060led_with_freq.py Lines 1 - 33

10
11
12
13
14
15
16
17

18
19
20
21
22
23

Display Image & text on I2C driven ssd1306 OLED display

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

import framebuf

WIDTH = 128 # oled display width
HEIGHT = 32 # oled display height
i2c = I2C(@, scl=Pin(9), sda=Pin(8), freq=200000) # Init I2C using pins GP8 & GP9
(default I2CO pins)

print("I2C Address : "+hex(i2c.scan()[@]).upper()) # Display device address
print("I2C Configuration: "+str(i2c)) # Display I2C config
oled = SSD1306_I2C(WIDTH, HEIGHT, i2c) # Init oled display

Raspberry Pi logo as 32x32 bytearray

buffer = bytearray(b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xa0\x80\x00\x83\xc1\x00\x00C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x080\x9c\x11\x008\xB0\xbf\xfd\x80\x00\xe1\x87\x00\x01\xc1\x83\x80\x02A
\x82@\xB2A\x82@\x02\xc1\xc2@\x02\xf6>\xcO\x01\xfc
=\x80\x081\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x008\x008\x0c \xB0\xB0\xB3\xcO\xB0\xB0\xB0\xB0\xB0\xB0\xB0\x80\xB0\x80\x80\xB0\x080")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer(buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on it.
oled.fill(@)

]
Using a SSD1306-based OLED graphics display 31

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306oled/i2c_1306oled_with_freq.py#L1-L33

Pico Python SDK

24

25 # Blit the image from the framebuffer to the oled display

26 oled.blit(fb, 96, ©)
27
28 # Add some text

29 oled.text("Raspberry Pi",5,5)
30 oled.text("Pico",5,15)

31

32 # Finally update the oled display so the image & text is displayed

33 oled.show()

Bill of Materials

Table 4. A list of

materials required for ltem

Quantity

Details

the example

Breadboard

1

generic part

Raspberry Pi Pico

1

http://raspberrypi.org/

Monochrome 128x32 12C OLED
Display

https://www.adafruit.com/product/
931

Using a SH1106-based OLED graphics display

Display an image and text on |12C driven SH1106-based OLED graphics display such as the Pimoroni Breakout Garden
1.12" Mono OLED https://shop.pimoroni.com/products/1-12-oled-breakout?variant=29421050757203 .

Wiring information

See Figure 8 for wiring instructions.

Figure 9. Wiring the
OLED to Pico using
12¢

L28x32 I2C OLED

128x32 OLED

Using a SH1106-based OLED graphics display

32

http://raspberrypi.org/
https://www.adafruit.com/product/931
https://www.adafruit.com/product/931
https://shop.pimoroni.com/products/1-12-oled-breakout?variant=29421050757203

Pico Python SDK

List of Files

Alist of files with descriptions of their function;

i2c_11060led_using_defaults.py

The example code.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/11060led/i2c_11060led_using_defaults.py Lines 1 - 34

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Display Image & text on I2C driven SH1106 OLED display
from machine import I2C, ADC

from sh1106 import SH11086_I2C

import framebuf

WIDTH = 128 # oled display width

HEIGHT = 128 # oled display height

i2c = I2C(0) # Init I2C using I2CO defaults,
SCL=Pin(GP9), SDA=Pin(GP8), freq=400000

print("I2C Address . "+hex(i2c.scan()[0@]).upper()) # Display device address
print("I2C Configuration: "+str(i2c)) # Display I2C config

oled = SH1106_I2C(WIDTH, HEIGHT, i2c) # Init oled display

Raspberry Pi logo as 32x32 bytearray

buffer = bytearray(b"\x80\x00\x080\x008\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xaB\x80\x00\x83\xc1\x00\xB0C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x080\x9c\x11\x00\x00\xbf\xfd\x00\x00\xe1\x87\x80\x01\xc1\x83\x80\x02A
\x82@\x02A\x82@\x02\xc1\xc2@\x02\xf6>\xcB\x01\xfc
=\x80\x081\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x008\x008\x0c \xB0\xB0\xB3\xcO\xB0\xB0\xB0\x00\xB0\x00\x00\x00\x00\x00\x00\x00\x00")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer (buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on 1it.
oled.fill(@)

Blit the image from the framebuffer to the oled display
oled.blit(fb, 96, 0)

Add some text
oled.text("Raspberry Pi",5,5)
oled.text("Pico",5,15)

Finally update the oled display so the image & text is displayed
oled.show()

i2c_11060led_with_freq.py

The example code, explicitly sets a frequency.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/11060led/i2c_1106oled_with_freq.py Lines 1 - 33

1
2
3
4
5
6

Display Image & text on I2C driven ssd1306 OLED display
from machine import Pin, I2C

from sh1106 import SH1106_I2C

import framebuf

WIDTH = 128 # oled display width

]
Using a SH1106-based OLED graphics display 33

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1106oled/i2c_1106oled_using_defaults.py#L1-L34
https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1106oled/i2c_1106oled_with_freq.py#L1-L33

Pico Python SDK

7 HEIGHT = 32 # oled display height

8

9 i2c = I2C(@, scl=Pin(9), sda=Pin(8), freq=200000) # Init I2C using pins GP8 & GP9
(default I2CO pins)

10 print("I2C Address : "+hex(i2c.scan()[0@]).upper()) # Display device address

11 print("I2C Configuration: "+str(i2c)) # Display I2C config

12

13

14 oled = SH1106_I2C(WIDTH, HEIGHT, i2c) # Init oled display

15

16 # Raspberry Pi logo as 32x32 bytearray

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

buffer = bytearray(b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xa0\x80\x00\x83\xc1\x00\x00C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x80\x9c\x11\x008\xB0\xbf\xfd\x80\x00\xe1\x87\x00\x01\xc1\x83\x80\x02A
\x82@\x02A\x82@\x02\xc1\xc2@\x02\xf6>\xcO\x01\xfc
=\x80\x01\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x00\x0B0\x0Bc \x00\x00\x0B3\xcO\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer(buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on 1it.
oled.fill(@)

Blit the image from the framebuffer to the oled display
oled.blit(fb, 96, 0)

Add some text
oled.text("Raspberry Pi",5,5)
oled.text("Pico",5,15)

Finally update the oled display so the image & text is displayed
oled.show()

sh1106.py

S

H1106 Driver Obtained from https://github.com/robert-hh/SH1106

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1106oled/sh1106.py Lines 1 - 227

—
(s3]

N NN = =2 23 O a a a a a
=

MicroPython SH1166 OLED driver, I2C and SPI interfaces
The MIT License (MIT)

Copyright (c) 2016 Radomir Dopieralski (@deshipu),
2017 Robert Hammelrath (@robert-hh)

0 N O g WN 2

N O
HOoH R R oW R R W OB R W W R W oW R OR W W R W W

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

3 # copies of the Software, and to permit persons to whom the Software is

4 furnished to do so, subject to the following conditions:

5]

6 The above copyright notice and this permission notice shall be included in
7 # all copies or substantial portions of the Software.

8

9 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
0 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

1 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
2 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

]
Using a SH1106-based OLED graphics display 34

https://github.com/robert-hh/SH1106
https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1106oled/sh1106.py#L1-L227

Pico Python SDK
]

23 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 # THE SOFTWARE.

26 #

27 # Sample code sections

28 # ——------- - GPI ===mm===s=ssssa===

29 # Pin Map SPI

30 # - 3v - XXXXXX - Vee

31 # -G - xxxxxx - Gnd

32 # - D7 - GPIO 13 - Din / MOSI fixed

33 # - D5 - GPIO 14 - Clk / Sck fixed

34 # - D8 - GPIO 4 - CS (optional, if the only connected device)
35 # - D2 - GPIO 5 - D/C

36 # - D1 - GPIO 2 - Res

37 #

38 # for CS, D/C and Res other ports may be chosen.

39 #

40 # from machine import Pin, SPI

41 # import sh1106

42

43 # spi = SPI(1, baudrate=1006000)

44 # display = sh1106.SH1106_SPI(128, 64, spi, Pin(5), Pin(2), Pin(4))
45 # display.sleep(False)

46 # display.fill(@)

47 # display.text('Testing 1', 0, 6, 1)

48 # display.show()

49 #

5f) 4 ====s==ssss==== A ===messsccscsmsz==

51 #

52 # Pin Map I2C

53 # - 3V - XXXXXX - Vee

54 # - G - xxxxxx - Gnd

55 # - D2 - GPIO 5 - SCK / SCL

56 # - D1 - GPIO 4 - DIN / SDA

57 # - DO - GPIO 16 - Res

58 # - G - XxXXxXX CcS

59 # - G - XXXXXX D/C

60 #

61 # Pin's for I2C can be set almost arbitrary

62 #

63 # from machine import Pin, I2C

64 # import sh1106

65 #

66 # i2c = I2C(scl=Pin(5), sda=Pin(4), freq=400000)

67 # display = sh1106.SH1106_12C(128, 64, i2c, Pin(16), 6x3c)
68 # display.sleep(False)

69 # display.fill(9)

70 # display.text('Testing 1', 6, 0, 1)

71 # display.show()

72

73 from micropython import const
74 import utime as time
75 import framebuf

76

77

78 # a few register definitions

79 _SET_CONTRAST = const(0x81)
80 _SET_NORM_INV = const(0xab)
81 _SET_DISP = const(@xae)
82 _SET_SCAN_DIR = const(0xco)
83 _SET_SEG_REMAP = const(0xad)

84 _LOW_COLUMN_ADDRESS = const(0x00)
85 _HIGH_COLUMN_ADDRESS = const(0x10)

]
Using a SH1106-based OLED graphics display 35

Pico Python SDK
]

86 _SET_PAGE_ADDRESS = const(0xBO)

87

88

89 class SH1106:

90 def __init__(self, width, height, external_vcc):
91 self.width = width

92 self.height = height

93 self.external_vcc = external_vcc

94 self.pages = self.height // 8

95 self.buffer = bytearray(self.pages * self.width)
96 fb = framebuf.FrameBuffer(self.buffer, self.width, self.height,
97 framebuf.MVLSB)

98 self.framebuf = fb

99 # set shortcuts for the methods of framebuf

100 self.fill = fb.fill

101 self.fill_rect = fb.fill_rect

102 self.hline = fb.hline

103 self.vline = fb.vline

104 self.line = fb.line

105 self.rect = fb.rect

106 self.pixel = fb.pixel

107 self.scroll = fb.scroll

108 self.text = fb.text

109 self.blit = fb.blit

110

111 self.init_display()

112

113 def init_display(self):

114 self.reset()

115 self.fill(e)

116 self.poweron()

117 self.show()

118

119 def poweroff(self):

120 self.write_cmd(_SET_DISP | 0x00)

121

122 def poweron(self):

123 self.write_cmd(_SET_DISP | 0x01)

124

125 def rotate(self, flag, update=True):

126 if flag:

127 self.write_cmd(_SET_SEG_REMAP | ©x01) # mirror display vertically
128 self.write_cmd(_SET_SCAN_DIR | ©x08) # mirror display hor.
129 else:

130 self.write_cmd(_SET_SEG_REMAP | ©0x00)
131 self.write_cmd(_SET_SCAN_DIR | 0x00)

132 if update:

133 self.show()

134

135 def sleep(self, value):

136 self.write_cmd(_SET_DISP | (not value))

137

138 def contrast(self, contrast):

139 self.write_cmd(_SET_CONTRAST)

140 self.write_cmd(contrast)

141

142 def invert(self, invert):

143 self.write_cmd(_SET_NORM_INV | (invert & 1))
144

145 def show(self):

146 for page in range(self.height // 8):

147 self.write_cmd(_SET_PAGE_ADDRESS | page)
148 self.write_cmd(_LOW_COLUMN_ADDRESS | 2)

]
Using a SH1106-based OLED graphics display 36

Pico Python SDK

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

def

self.write_cmd(_HIGH_COLUMN_ADDRESS | 0)
self.write_data(self.buffer|

self.width * page:self.width * page + self.width
1)

reset(self, res):

if res is not None:
res(1)
time.sleep_ms(1)
res(0)
time.sleep_ms(20)
res(1)
time.sleep_ms(20)

164 class SH1106_I2C(SH1106):

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

def

def

def

def

__init__(self, width, height, i2c, res=None, addr=0x3c,
external_vcc=False):
self.i2c = i2c
self.addr = addr
self.res = res
self.temp = bytearray(2)
if res is not None:
res.init(res.OUT, value=1)
super().__init__(width, height, external_vcc)

write_cmd(self, cmd):

self.temp[@] = 0x88 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)

write_data(self, buf):
self.i2c.writeto(self.addr, b'\x40'+buf)

reset(self):
super().reset(self.res)

187 class SH1106_SPI(SH1106):

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

def

def

__init__(self, width, height, spi, dc, res=None, cs=None,
external_vcc=False):
self.rate = 10 * 1000 * 1000
dc.init(dc.OUT, value=80)
if res is not None:
res.init(res.OUT, value=0)
if cs is not None:
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
super().__init__(width, height, external_vcc)

write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=@, phase=0)
if self.cs is not None:

self.cs(1)

self.dc(0)

self.cs(@)

self.spi.write(bytearray([cmd]))

self.cs(1)
else:

self.dc(0)

]
Using a SH1106-based OLED graphics display 37

Pico Python SDK
]

212 self.spi.write(bytearray([cmd]))
213

214 def write_data(self, buf):

215 self.spi.init(baudrate=self.rate, polarity=0, phase=0)
216 if self.cs is not None:

217 self.cs(1)

218 self.dc(1)

219 self.cs(0)

220 self.spi.write(buf)

221 self.cs(1)

222 else:

223 self.dc(1)

224 self.spi.write(buf)

225

226 def reset(self):

227 super().reset(self.res)

Bill of Materials

Table 5. A list of . -
materials required for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
Monochrome 128x128 12C OLED 1 https://shop.pimoroni.com/products/
Display 1-12-oled-breakout?
variant=29421050757203

Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)

Combination of the PIO WS2812 demo with the Adafruit 'essential' NeoPixel example code to show off color fills, chases
and of course a rainbow swirl on a 16-LED ring.

Wiring information

See Figure 10 for wiring instructions.

Figure 10. Wiring the
16-LED NeoPixel Ring
to Pico

Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 38

http://raspberrypi.org/
https://shop.pimoroni.com/products/1-12-oled-breakout?variant=29421050757203
https://shop.pimoroni.com/products/1-12-oled-breakout?variant=29421050757203
https://shop.pimoroni.com/products/1-12-oled-breakout?variant=29421050757203

Pico Python SDK
]

List of Files

Alist of files with descriptions of their function;

neopixel_ring.py

The example code.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/neopixel_ring/neopixel_ring.py Lines 1 - 104

Example using PIO to drive a set of WS2812 LEDs.

1
2

3 import array, time

4 from machine import Pin
5 import rp2
6
7
8

Configure the number of WS2812 LEDs.
NUM_LEDS = 16

9 PIN_NUM = 6

10 brightness = 6.2

12 @rp2.asm_pio(sideset_init=rp2.PI0.0UT_LOW, out_shiftdir=rp2.PIO0.SHIFT_LEFT, autopull=True,
pull_thresh=24)
13 def ws2812():

14 T =2

15 T2 =5

16 T3 = 3

17 wrap_target()

18 label("bitloop")

19 out(x, 1) .side(0) [T3 - 1]
20 jmp(not_x, "do_zero") .side(1) [T1 - 1]
21 jmp("bitloop") .side(1) [T2 - 1]
22 label("do_zero")

23 nop () .side(@) [T2 - 1]
24 wrap()

25

26

27 # Create the StateMachine with the ws2812 program, outputting on pin

28 sm = rp2.StateMachine(®, ws2812, freq=8_000_000, sideset_base=Pin(PIN_NUM))
29

30 # Start the StateMachine, it will wait for data on its FIFO.

31 sm.active(1)

82

33 # Display a pattern on the LEDs via an array of LED RGB values.

34 ar = array.array("I", [@ for _ in range(NUM_LEDS)])

35

36 HAHAHHHRHAAAHH AR A AR R A A A

37 def pixels_show():

38 dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
39 for i,c in enumerate(ar):

40 r = int(((c >> 8) & BxFF) * brightness)

41 g = int(((c >> 16) & OxFF) * brightness)

42 b = int((c & OxFF) * brightness)

43 dimmer_ar[i] = (g<<16) + (r<<8) + b

44 sm.put(dimmer_ar, 8)

45 time.sleep_ms(10)

46

47 def pixels_set(i, color):

48 ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]
49

50 def pixels_fill(color):

51 for i in range(len(ar)):

52 pixels_set(i, color)

]
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 39

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/neopixel_ring/neopixel_ring.py#L1-L104

Pico Python SDK

53

54 def color_chase(color, wait):

55 for i in range(NUM_LEDS) :

56 pixels_set(i, color)

57 time.sleep(wait)

58 pixels_show()

59 time.sleep(0.2)

60

61 def wheel(pos):

62 # Input a value 6 to 255 to get a color value.
63 # The colours are a transition r - g - b - back to r.
64 if pos < @ or pos > 255:

65 return (8, 0, 0)

66 if pos < 85:

67 return (255 - pos * 3, pos * 3, 0)

68 if pos < 170:

69 pos -= 85

70 return (8, 255 - pos * 3, pos * 3)

71 pos -= 170

72 return (pos * 3, @, 255 - pos * 3)

73

74

75 def rainbow_cycle(wait):

76 for j in range(255):

77 for i in range(NUM_LEDS) :

78 rc_index = (i * 256 // NUM_LEDS) + j
79 pixels_set(i, wheel(rc_index & 255))
80 pixels_show()

81 time.sleep(wait)

82

83 BLACK = (8, 0, 0)

84 RED = (255, 0, 0)

85 YELLOW = (255, 150, ©)
86 GREEN = (8, 255, 0)

87 CYAN = (@, 255, 255)

88 BLUE = (@, @, 255)

89 PURPLE = (180, @, 255)
90 WHITE = (255, 255, 255)

91 COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)

92
93 print("fills")
94 for color in COLORS:

95 pixels_fill(color)
96 pixels_show()

97 time.sleep(0.2)

98

99 print("chases")

100 for color in COLORS:

101 color_chase(color, 0.01)
102

103 print("rainbow")

104 rainbow_cycle(0)

Bill of Materials

Table 6. A list of . .

materials required for ltem Quantlty Details

h Il .

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/

Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)

40

http://raspberrypi.org/

Pico Python SDK
]

NeoPixel Ring 1 https://www.adafruit.com/product/
1463

. __|
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 11

https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463

@ Raspberry Pi

Raspberry Piis a trademark of the Raspberry Pi Foundation

Raspbenry Pi Trading Ltd

	Pico Python SDK
	Colophon
	Legal Disclaimer Notice
	Table of Contents

	Chapter 1. The MicroPython Environment
	1.1. Getting MicroPython for RP2040
	1.2. Installing MicroPython on Raspberry Pi Pico
	1.3. Building MicroPython From Source

	Chapter 2. Connecting to the MicroPython REPL
	2.1. Connecting from a Raspberry Pi over USB
	2.2. Connecting from a Raspberry Pi using GPIO
	2.3. Connecting from a Mac using USB
	2.4. Say "Hello World"
	2.5. Blink an LED
	2.6. What next?

	Chapter 3. The RP2040 Port
	3.1. Blinking an LED Forever (Timer)
	3.2. UART
	3.3. ADC
	3.4. Interrupts
	3.5. Multicore Support
	3.6. I2C
	3.7. SPI
	3.8. PWM
	3.9. PIO Support
	3.9.1. IRQ
	3.9.2. WS2812 LED (NeoPixel)
	3.9.3. UART TX
	3.9.4. SPI
	3.9.5. PWM
	3.9.6. Using pioasm

	Chapter 4. Using an Integrated Development Environment (IDE)
	4.1. Using Thonny
	4.1.1. Connecting to the Raspberry Pi Pico from Thonny
	4.1.2. Blinking the LED from Thonny

	4.2. Using rshell

	Appendix A: App Notes
	Using a SSD1306-based OLED graphics display
	Wiring information
	List of Files
	Bill of Materials

	Using a SH1106-based OLED graphics display
	Wiring information
	List of Files
	Bill of Materials

	Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)
	Wiring information
	List of Files
	Bill of Materials

